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ABSTRACT
We present HERMES, a new hybrid integration scheme for long-term simulations of
planetary systems undergoing close encounters or planetesimal-driven migration. Par-
ticles are integrated using WHFast, a fast and accurate symplectic integrator, unless a
close encounter occurs. During a close encounter, a subset of particles is integrated
with the high-order integrator IAS15, while the rest of the particles continue to be
integrated with WHFast. We created an adaptive routine for optimizing the close en-
counter boundary to help maintain accuracy whilst close encounters are occurring.

The switching between integrators leads to a finite energy error. HERMES takes a
more direct approach when switching between integrators than previous schemes in
the literature, allowing us to analytically estimate the numerical error of our algo-
rithm. Since WHFast is symplectic, IAS15 is accurate to machine precision and both of
them are unbiased, the energy error grows sub-linearly with time under the assump-
tion that either impact parameters are randomly distributed or close encounters are
rare.

We find that HERMES provides a good balance between speed and accuracy, nei-
ther achieved by the individual symplectic or non-symplectic integrators alone. In this
paper, we describe the details of implementation, accuracy and performance, as well
as its incorporation within the larger framework of the N -body package REBOUND.

1 INTRODUCTION

Over the last 25 years scientists have made considerable
progress integrating N gravitationally interacting particles
(an N -body system) using computational techniques. The
most widely used integrator today for solving Solar System
type problems is the Wisdom-Holman integrator (Wisdom &
Holman 1991, hereafter WH), which decomposes the sys-
tem’s Hamiltonian, H, into a Keplerian and an interaction
component, HK and HI . Symplectic integrators which split
the Hamiltonian in this way are known as mixed-variable
symplectic integrators (Wisdom & Holman 1991; Saha &
Tremaine 1992). The system is then evolved in a second-order
leapfrog manner, taking the form of K(dt/2)I(dt)K(dt/2),
where K represents evolution under HK , I represents evolu-
tion under HI , and dt is the timestep. Although higher-order
algorithms are possible (e.g. Yoshida 1990), the second-order
WH method is optimal since the increased accuracy of higher-
order methods comes at the cost of additional calculation. The
evolution under the interaction Hamiltonian is trivial to solve
exactly in Cartesian coordinates, whereas the evolution un-
der the Keplerian Hamiltonian is easy to solve exactly using

orbital elements. This algorithm therefore converts between
the two coordinate systems each timestep.

Since the WH scheme breaks the evolution into oper-
ators that both derive from Hamiltonians, the algorithm is
symplectic (for a review on symplectic algorithms see Yoshida
(1993)). This implies that the numerical solution conserves
quantities closely related to the integrals of motion, such as
the total energy. The relative energy error scales as O(εdt2) if
the magnitude of HI remains O(ε) smaller than HK , where
ε � 1 (Saha & Tremaine 1994). For distant particles in non-
overlapping orbits ε is typically much less than unity. This is
one motivation for splitting H into HK and HI , as it allows
for longer timesteps (and thus shorter integration times) than
conventional integration schemes. However, during close en-
counters, HI becomes comparable to or larger than HK caus-
ing ε, and thus the energy error, to grow substantially. There-
fore, despite their brief duration, close encounters typically
dictate an unacceptably short timestep for the entire simu-
lation. Note that it is not possible to dynamically change the
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timestep in the standard WH integrator as it would break time
symmetry and thus symplecticity1.

For very high accuracy integrations (with relative errors
of order the machine precision), non-symplectic integrators
are as good and as fast as or faster than symplectic integra-
tors (Rein & Spiegel 2015). But in most integrations, medium
to low accuracy is enough to capture the qualitative evolu-
tion of a system. In such a case a symplectic integrator pro-
vides an advantage as the timestep can be large while keep-
ing the numerical errors bound. This advantage of symplectic
integrators, together with the common need to accurately re-
solve close encounters motivates the development of hybrid
integrators that can make use of both symplectic and non-
symplectic integrators.

Several hybrid integrators that make use of a (modified)
WH integrator have been developed. The two most popular
ones are SyMBA (Duncan et al. 1998) and the hybrid integra-
tor from the MERCURY package (Chambers 1999, hereafter re-
ferred to as MERCURY).

SyMBA decomposes the interaction potential into a series
of shells around each body and uses progressively smaller
timesteps for each shell to increase time resolution. If the par-
ticles are well separated, there is only one contributing shell
to the interaction term and the integrator is effectively WH.
During a close encounter the inner shells contribute to the
integration using smaller timesteps to resolve the encounter.

MERCURY handles close encounters by using a smooth
changeover function to transfer large terms from HI to HK .
When particles are distant, interactive forces between parti-
cles are small and evaluated during HI . When particles are
close, interactive forces become large and are transferred to
HK , thus keeping HI small. This makes HK a three body
problem (central body plus two particles undergoing a close
encounter) which cannot be solved analytically but is straight-
forward to integrate numerically to high precision using a
Bulirsch-Stoer routine (Press et al. 1988).

In this paper we present a new integration method,
HERMES, which borrows ideas from the integrators mentioned
above, but takes a more direct approach to handling close en-
counters. It combines two existing integrators, WHFast (Rein
& Tamayo 2015) which is a fast and unbiased implementation
of the WH method, and the high-order IAS15 integrator (Rein
& Spiegel 2015). HERMES has been seamlessly incorporated
into REBOUND (Rein & Liu 2012), adding further flexibility to
the modular N -body package.

The outline for the paper is as follows: Section 2 de-
scribes the algorithm for HERMES, Section 3 characterizes er-
ror, Section 4 shows standard tests of HERMES as well as a
comparison to SyMBA and MERCURY, and we conclude in Sec-
tion 5.

1 If one can make the timestep choice independent of the current
state, for example by using a predefined sequence of timesteps, then
the integrator remains symplectic.

Figure 1. A diagram illustrating how different particle types (active,
semi-active, test) affect each other. Arrows indicate directions of grav-
itational influence.

2 METHODS

2.1 Particle Classification

First we define the three different types of particles han-
dled by HERMES: active particles, semi-active particles and test
particles. Active particles can gravitationally affect all other
types of particles, and are typically stars or planets. Semi-
active particles can affect active particles only (not other
semi-active particles), and are typically asteroids, planetes-
imals, and other smaller objects. Test particles are only af-
fected by active particles and cannot affect any other particle,
and are typically dust grains, rocks, small asteroids or space-
crafts. Figure 1 summarizes these interactions, where arrows
represent directions of gravitational influence.

2.2 Heliocentric version of WHFast

The original WHFast algorithm described in Rein & Tamayo
(2015) was implemented in Jacobi coordinates. Jacobi coor-
dinates lead to a better precision compared to heliocentric
coordinates if orbits are well separated and do not cross each
other. If close encounter occur, then heliocentric coordinates
can help improve the integrator’s accuracy. For that reason we
implemented a heliocentric version of WHFast in REBOUND. We
call it WHFastHelio. We use it as the symplectic integrator in
HERMES but note that WHFastHelio can also be used by itself.
We choose the specific splitting of the Hamiltonian by Duncan
et al. (1998) and Chambers (1999). For a discussion on the
different splittings, their advantages and disadvantages, see
Wisdom (2006). For the remainder of this paper we will refer
to WHFastHelio simply as WHFast as both integrators use the
same Kepler solver.

2.3 Algorithm

The HERMES integrator is composed of two parts, a global sim-
ulation which contains all particles, and a mini simulation
which contains all active particles plus any semi-active or test
particles involved in a close encounter. The global simulation
is integrated using WHFast, while the mini simulation is inte-
grated using IAS15. We first outline the overall algorithm for
one timestep2 of length dt and then describe the individual
steps in more detail.

2 We refer to the timestep that WHFast takes as dt. The IAS15 inte-
grator chooses its own timestep which is typically smaller than dt.
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To evolve the system for a single timestep HERMES per-
forms the following steps:

(i) Check for close encounters. If any particle (active,
semi-active, or test) has a close encounter with an active par-
ticle, then copy those particles involved in the close encounter
as well as all active particles to the mini simulation.

(ii) Integrate the global simulation using the WHFast in-
tegrator for one timestep, dt.

(iii) Integrate the mini simulation using the IAS15 inte-
grator. The mini simulation only needs to be computed if a
close encounter is currently underway and there are particles
in the mini simulation.

(iv) Update the particles in the global simulation if the
mini simulation was active this timestep.

Although the algorithm is simple to write down in the
above form, there are several caveats to point out. For all
particles excluding the central body, we define the param-
eter fH, which we dub the Hill Switch Factor. A spherical
shell is constructed around each body from the object’s Hill
radius rH times fH, and if the shells of any two particles over-
lap it is deemed a close encounter. Since all semi-active and
test particles are invisible to each other they cannot be in-
volved in close encounters with one another. Only particles
that gravitationally interact with each other can participate in
close encounters (see Fig. 1). Whenever there is at least one
close-encounter the mini simulation is integrated, if no close-
encounters occur, the mini simulation is not active and the
integrator defaults to WHFast. Since the central object has no
Hill sphere this motivates us to define the Solar Switch Factor,
f�, which only applies to the central body. Like fH it also de-
fines a spherical shell except is in units of the star’s physical
radius instead of Hill radii.

During a close encounter, WHFast still integrates all parti-
cles (including those involved in the close encounter) leading
to momentarily large errors for the particles involved in the
close encounter. One might expect that this poses a real prob-
lem for the accuracy, but that is not the case, since all parti-
cles involved in the close encounter plus all active particles
are overwritten at the end of the timestep using the accurate
results from the mini simulation.

Unlike the global simulation, the mini simulation may
take many timesteps to get from t to t+ dt. The length of the
timestep in the mini simulation is automatically determined
by the IAS15 integrator. During each sub-timestep the mini
simulation also checks for physical collisions between over-
lapping particles.

As an example of how the mini and global simulations
integrate through time, consider a 2 planet, 2 planetesimal
system. The planets are active particles and the planetesi-
mals are semi-active particles. Figure 2 shows the distance
of the planetesimals and planet 2 from planet 1 as a function
of time. A point is plotted after every timestep in both the
global and mini simulation. After 0.2 years, planetesimal 1
(a semi-active body) has a close encounter with planet 1 (an
active body). At that time, the mini simulation is turned on
and planetesimal 1, planet 1 the central star (not shown) and
planet 2 are added to the mini simulation and integrated un-
til 0.75 years, at which point the close encounter between
planetesimal 1 and planet 1 is complete. Planetesimal 2 on
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Figure 2. A short simulation displaying the HERMES integrator for a
2 planet, 2 planetesimal system orbiting a central star. When active,
the mini simulation takes many sub-timesteps for each dt and inte-
grates planets 1, 2 and planetesimal 1 during the close encounter
between planet 1 and planetesimal 1.

the other hand continues to be solely integrated by the global
simulation (using WHFast) throughout the close encounter. By
comparing the outputs of planetesimal 2 and the other par-
ticles in Fig. 2, one can see that the mini simulation takes
numerous sub-timesteps compared to the global simulation.
Since IAS15 is an adaptive method, it automatically chooses
the appropriate timestep to resolve the close encounter with
machine precision accuracy.

We conclude by discussing the speed of the algorithm.
If no particles are integrated with IAS15, then the speed is
effectively that of WHFast with a small overhead due to colli-
sion checks. If all particles are integrated with IAS15, then the
speed is that of a simulation running only IAS15, again with
a small and in general negligible overhead due to collision
checks. Consider a typical simulation of multiple active parti-
cles undergoing planetesimal migration from a large number
of semi-active particles with a reasonable fH value. As the
number of semi-active particles is increased, the ratio of the
number of particles in the mini simulation,Nmini, to the num-
ber of particles in the global simulation, Nglobal, approaches
a constant. In this limit the elapsed simulation time is linearly
proportional to the number of semi-active particles in the sim-
ulation.

2.4 Perturbative Forces in the Mini Simulation

One must carefully treat the forces perturbing the motions of
active particles in the mini simulation. In the global simula-
tion, active particles receive perturbative kicks from all semi-
active particles, and it is important to reproduce these forces
in the mini simulation, which only evolve a subset of particles.
To further complicate this issue, the mini simulation takes nu-
merous sub-timesteps for each global timestep. In HERMES, we
linearly interpolate the forces of all semi-active particles ab-
sent from the mini simulation using the initial and final val-
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ues from the global simulation. We find that interpolating the
forces (rather than positions) leads to a significant speed gain
without compromising noticeable accuracy.

One could argue that this process should be iterated –
the active particles will arrive at slightly different (and more
accurate) final positions when integrated with the mini sim-
ulation, and thus the perturbative forces they would have in-
duced on the semi-active particles in the global simulation
would be slightly different too. Thus if one wanted to im-
prove the accuracy of the algorithm an iterative process could
be constructed where the global and mini simulations take
turns integrating for a timestep dt making use of the updated
positions from the previous iteration.

However, as long as the semi-active particles have a much
smaller mass than the active particles, we have found that
this iterative process is unnecessary, allowing us to reduce
both the computation time and algorithmic complexity. We
note that in our current non-iterative scheme, interpolating
the forces between pairs of active particles introduces non-
negligible numerical errors. For that reason, all active parti-
cles are automatically added to the mini simulation during
any close encounter, even if they are not involved in the close
encounter themselves.

2.5 Adaptive fH Algorithm

fH and dt are the most important parameters to consider
when simulating a system with HERMES. For a system free of
close encounters, dt alone determines the precision of the al-
gorithm. However during close encounters fH and dt together
determine the algorithm’s precision (see Section 3). Specifi-
cally, if a particle moves a distance ∼ fHrH per timestep dt
the algorithm could miss a close encounter, introducing large
errors into the simulation. In addition, an initial choice of fH

and dt can become non-optimal if a system evolves signifi-
cantly from its initial state.

To aid the user in making the correct parameter choices,
we have developed a simple algorithm that, given a timestep
dt, conservatively estimates the smallest value of fH under
the condition that no close encounter is missed. Although fH

and dt both determine the precision of HERMES during a close
encounter, we only optimize fH since constantly changing dt
would result in non-negligible numerical errors for a symplec-
tic integrator like WHFast. We calculate the optimal fH each
iteration, ensuring that fH adapts to an evolving system and
guarantees that close encounters are continuously resolved.
The user is therefore only required to set the timestep dt for a
standard integration (f� is set to a default value serving most
purposes). The full algorithm works as follows.

For each body, we ignore the inclination, and marginal-
ize over the phase and longitude of periapsis from 0 to 2π.
As illustrated in Figure 3, this smears out the orbit into a
ring in the reference plane. Each ring has a maximum and
minimum distance from the central object, rmin and rmax. We
then check if any two interacting particles can possibly have
a close encounter by comparing their rmin and rmax values.
If an intersection of two rings occurs, say for particles i and
j, we calculate their maximum relative velocity ∆vij,max in
the overlapping interval between the two particles. We cal-
culate ∆vij,max as a simple overestimate rather than the true

Figure 3. Panel a. shows a regular orbit in 2D, while panel b. shows
the construction of a ring by rotating the orbit’s pericenter by 2π.

maximum in order to speed up the calculation. As a result of
ignoring the inclination and marginalizing over the phase and
longitude of periastron, ∆vmax can be calculated from just the
semi-major axis and the eccentricity. We note that we do not
need to solve Kepler’s equation in estimating ∆vmax.

We can then calculate fH by taking the maximum over
all interacting particle pairs (see Fig 1),

fH = 4 max
i,j

∆vij,maxdt

rH,i + rH,j
.

The numerical constant 4 ensures that two particles move at
most one quarter of fH(rH,i+rH,j) in one timestep and there-
fore no close encounters are missed.

In practice, we also round up fH to the nearest 1.25x

where x is an integer to avoid continuous fluctuations in fH.
By default, our adaptive fH algorithm is enabled in HERMES.
Since the algorithm assumes particles move on approximately
coplanar orbits, it may therefore fail at very high mutual incli-
nations. We note that the above algorithm chooses the small-
est value of fH that captures all close encounters; however,
small values of fH introduce numerical errors when switch-
ing between integrators (see Section 3). Therefore, to avoid
large errors we set a default lower limit of fH = 3, which
is close to the default close encounter boundary for MERCURY
and SyMBA. The user can specify their own lower limit for fH

by setting ri hermes.hill switch factor at runtime.
The adaptive fH algorithm can be switched off by set-

ting the variable ri hermes.adaptive hill switch factor

to zero. If the adaptive fH algorithm is switched off, set-
ting ri hermes.hill switch factor simply defines a con-
stant value of fH for the duration of the simulation (analo-
gous to MERCURY and SyMBA).

We decided against devising a similar algorithm for f�
due to the additional difficulties that can arise. For exam-
ple, an object in a circular orbit around a planet would be
confused as a heliocentric orbit with a very high eccentricity,
leading to large relative velocities and an excessive f� value.

3 ERROR

Several terms contribute to the relative energy error of an
integrator (e.g. Rein & Spiegel 2015):

E = Efloor + Eround + Ebias + Escheme. (1)

Efloor is a constant due to the inability to represent num-
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bers with arbitrary precision on a computer. Here we work ex-
clusively in IEEE754 double floating point precision and thus
have Efloor ∼ 10−16.

Eround arises when a computation is performed on two
floating point numbers. Almost all operations (addition, mul-
tiplication, square roots) lead to a roundoff error at the level
of the machine precision. The IEEE754 standard guarantees
that the round-off error in consecutive floating point opera-
tions is random, thus leading to a ∝ t1/2 growth of Eround

with time.
Ebias is the error from any biased operations and grows

at least as ∝ t. Biased operations can originate from poor
implementations3 or from library functions that the IEEE754
standard does not guarantee will return unbiased results4 .

Escheme, the final term in Eq. 1, is the error introduced
by the algorithm itself. Typically, this quantity is bound for
symplectic integrators but grows linearly with time for non-
symplectic integrators.

The important question is which error term dominates,
and the answer will depend on the problem at hand. For ex-
ample, if a three-body system (star and two planets) is inte-
grated with IAS15, Eiasscheme ≈ 10−28 and the dominant error
term will be Eround, starting at 10−16 and growing as t1/2

(see Rein & Spiegel 2015). If we instead integrate the system
with WHFast, the dominant error term will be Escheme, which
is determined both by the mass ratio in the system and the
timestep. For typical parameters EWH

scheme ∼ 10−9, and only
for very long simulation times (∼ 1014 timesteps) will the
growth of Eround dominate over EWH

scheme. For biased imple-
mentations, Ebias will dominate the error budget at earlier
times.

For typical simulations integrated with HERMES, Escheme

will dominate. The WH algorithm integrates a slightly differ-
ent Hamiltonian from the true Hamiltonian described by the
system, leading to an error that is constant as long as the inte-
grated Hamiltonian remains constant as well. However each
time a particle is transferred to or from the global simulation
(see Section 2.3), the WH-integrated Hamiltonian changes,
and thus the error will change too. For a typical WH integra-
tion, working in democratic heliocentric coordinates, Escheme

is (e.g. Saha & Tremaine 1994; Wisdom 2006):

EWH
scheme =

dt2

12
{{HK , Hβ} , 0.5HK +Hβ}+O(dt4) (2)

Here HK is the Keplerian Hamiltonian, Hβ = HC + HI is
the summed momentum cross-term and interaction Hamilto-
nians, respectively, and {} are Poisson brackets (the quanti-
ties are explicitly defined for a test case with three particles
below). For largeN -body systems, Eq. 2 quickly becomes very
difficult to evaluate analytically. However, we can gain some
insight by applying Eq. 2 to a simple system.

We turn to a three body problem consisting of a star (ac-
tive body), planet (active body) and planetesimal (semi-active

3 For example, the expression x*(2./3.) multiplies x by a number
that is consistently slightly too big or too small when represented in
binary. By contrast, the expression 2.*(x/3.) multiplies and divides
x by numbers that are exactly representable in binary and is unbiased.
4 For example, the standard library function sqrt() returns an unbi-
ased result whereas sin() returns a biased result.

Figure 4. Three body problem, in the reference frame of the planet.
In a. the initial setup is shown, where the planetesimal starts near
the planet, inside a sphere of radius rHfH and the entire system is
integrated purely by IAS15. Here the arrow indicates the initial di-
rection of the planetesimal. In b. the planetesimal exits the sphere
with radius rHfH and the system is integrated purely via WHFast,
introducing a numerical error of EWH

scheme.

body), shown in Figure 4. The planetesimal is initially placed
inside fH with sufficient velocity such that the distance be-
tween the planet and planetesimal grows over time. While
the planetesimal is inside fH (panel a. in Fig. 4) the system is
integrated to machine precision by IAS15. However once the
planetesimal leaves fH (panel b. in Fig. 4) the system switches
to being integrated by WHFast, and an error of size EWH

scheme is
introduced.

To estimate EWH
scheme, we start from the general Hamilto-

nian for an N -body system in Democratic Heliocentric coor-
dinates:

H = H0 +HK +HC +HI

where H0 is a constant describing the motion of the centre of
mass along a straight line, and disappears when we evaluate
Eq 2. The remaining terms in Eq. 3 take the form (Duncan
et al. 1998):

HK =

N−1∑
i=1

P2
i

2mi
−
N−1∑
i=1

Gm0mi

|Qi|
(3)

HC =
1

2m0

∣∣∣∣∣
N∑
i=1

Pi

∣∣∣∣∣
2

(4)

HI = −
N−1∑
i=1

N∑
j=i+1

Gmimj

|Qi −Qj|
(5)

where the canonical coordinates Q and P are:

Qi =

{
ri − r0 if i 6= 0

1
mtot

∑N
j=0 mjrj if i = 0

(6)

Pi =

{
pi − mi

mtot

∑N
j=0 pj if i 6= 0∑N

j=0 pj if i = 0
(7)

Here p, r, m are a particle’s momentum, position and mass
in any inertial frame respectively, while G is the gravitational
constant and mtot =

∑N
j=0 mj is the total mass of the system.

Qi are therefore heliocentric positions (with Q0 the centre
of mass), while Pi are barycentric momenta (with P0 the
momentum of the centre of mass).
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Figure 5. Final relative energy error as a function of fH for a star-
planet-planetesimal system. Blue dots are numerical simulations, the
green curve is the theoretical prediction of Eq. 8.

We also further simplify the system to two dimensions
by considering motion in a plane. One can then straightfor-
wardly, albeit tediously, evaluate the Poisson bracket in Eq. 2
by plugging in Eqs. 3–5 and taking derivatives with respect to
all three particles. We make the further simplifying assump-
tions that m0 � m2 � m1 and that v1 ≈ v2 ≈

√
Gm0/a,

where v denotes particle velocities and a2 is the semi-major
axis of the planet. In addition, after solving Eq. 2 we set the
distance of the planetesimal from the planet to rHfH, where
rH is the Hill radius of the planet. This is true at the moment
the integration method is switched. We are then left with a
single dominating term,

EHERMES
scheme ≈

dt2

12

G2m0m1m2

a2(rHfH)3
, (8)

where we have ignored numerical constants of order unity.
An IPython notebook with a computer derivation is available
at https://github.com/silburt/hermes_ipython.

We compare our theoretical predictions in Eq. 8 to nu-
merical tests in Figures 5 and 6. Our numerical setup consists
of a star with mass 1M�, a Neptune mass planet on a cir-
cular orbit at 1 AU, and a planetesimal with mass 10−8M�
placed at 0.001 AU from the planet. To marginalize over the
phase of the encounter when sampling the energy error, the
initial position of the planetesimal is randomized for each re-
alization. In addition, the planetesimal is given a small kick
equal to the escape velocity of the planet to ensure that the
planetesimal-planet distance increases with time. Each real-
ization is simulated for 7 years. When varying the timestep
in Fig. 6 we use a constant fH = 6, and when varying fH in
Fig. 5 we use a constant timestep of dt = 0.058 days.

In Figure 5 one can see that the numerical tests agree
with the theoretical predictions of Eq. 8. In addition, one can
see the two extreme regimes on each end of the figure. For
particles starting outside the rHfH boundary the integrator
always uses WHFast (like panel b. of Fig. 4), while for par-
ticles inside the rHfH boundary the simulation uses IAS15
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Figure 6. Final energy error as a function of dt for a star-planet-
planetesimal system. Blue dots are numerical simulations, the green
curve is the theoretical prediction of Eq. 8.

(like panel a. of Fig. 4). In Figure 6 one can see that the rel-
ative energy error is proportional to dt2, again matching the
predictions of Eq. 8. For both Fig. 5 and Fig. 6, we have not
performed any kind of fit, we simply over-plotted Eq. 8 with
the data from our numerical experiments. We have performed
other suites of simulations testing how the energy error scales
with all other relevant quantities (semi-major axis, planetes-
imal mass, planet mass, stellar mass) and find Eq. 8 in good
agreement. An IPython notebook for these experiments (in-
cluding tests of the other relevant quantities) is available at
https://github.com/silburt/hermes_ipython.

We now extend the characterization of the error to a
more realistic case with N particles. We refer to the total
relative energy error for an integration as EHERMES

scheme,tot. Since
an error of size EHERMES

scheme is introduced each time a particle
leaves/enters the global simulation, the total errors should be
related to the number of close encounters, NCE. In the ideal
case where the integrator is unbiased, the error EHERMES

scheme in-
troduced by each close encounter is random, and EHERMES

scheme,tot

will grow as a N1/2
CE random walk. However, if HERMES is bi-

ased (i.e. EHERMES
scheme is not random), then EHERMES

scheme,tot will grow
faster than N1/2

CE .
Assuming the unbiased case, EHERMES

scheme,tot is equal to:

EHERMES
scheme,tot = K · EHERMES

scheme ·
√
NCE (9)

where K is a constant of proportionality. We test Eq. 9 against
numerical tests for a Solar mass star, a Neptune mass planet
on a circular orbit at 1 AU, and a disk of 200 planetesimals lo-
cated between 0.98− 1.02 AU. The initial inclinations and ec-
centricities of the planetesimals in the disk are set to 0, while
the argument of perihelion and true anomaly are drawn from
a uniform distribution. In addition, for these simulations we
set fH = 6 and dt = 0.015 years. We performed numerous in-
tegrations, integrating each realization for a randomly chosen
number of orbital periods between 10-1000, yielding different
numbers of close encounters.

The results are shown in Figure 7, the x-axis showing the

c© 0000 RAS, MNRAS 000, 000–000



HERMES: A hybrid integrator 7

101 102 103 104

NCE

10-11

10-10

10-9

10-8

10-7

10-6

10-5

re
la

ti
v
e
 e

n
e
rg

y
 e

rr
o
r

15.5·EHERMES
scheme ·N 0. 53

CE

EHERMES
scheme ∗NCE

Figure 7. Final relative energy error as a function of the number of
close encounters, for a system composed of a star, planet and 200
planetesimals. Blue dots are numerical simulations, the green line is
our unbiased theoretical prediction of Eq. 9 with K = 15, while the
red line is the biased theoretical prediction.

number of close encounters during a simulation and the y-axis
showing the final relative energy error for each simulation.
We fit a power-law distribution to the data using Python’s
Scipy Optimize Curve Fit package (Peterson 2009), displayed
as a green line in Fig. 7. The resulting fit is EHERMES

scheme,tot =
15.5 · EHERMES

scheme · N0.53
CE , so the energy growth is well approxi-

mated by Eq. 9. For reference, we plot the biased prediction
of EHERMES

scheme,tot ∝ NCE as a red line. We conclude that HERMES
is unbiased for this setup. Thus, Eq. 9 provides an intuitive
way of understanding how the error of HERMES grows without
having to analytically solve Eq. 2 in three dimensions for N
particles.

The results from Fig. 7 did not allow for physical colli-
sions between particles. When physical collision are enabled
a systematic bias can be introduced.

To see why, note that for each close encounter two contri-
butions to the energy error arise according to Eq. 8; one when
the particles are transferred from the global to the mini simu-
lation (i.e. the ingress of the close encounter) and one when
the particles are transferred back from the mini to the global
simulation (i.e. the egress of the close encounter). The pre-
cise energy change depends on the specific properties of the
system (phases of the orbits, angles of approach, etc.), and
typically the energy changes associated with the ingress and
egress of the close encounter are anticorrelated. As a result,
no appreciable energy error is introduced by close encoun-
ters, and the energy over the course of a simulation grows as
expected according to Eq. 9.

However, when a physical collision occurs in HERMES, the
close encounter only has an ingress, resulting in a biased
growth in the energy error. In practice this energy bias is or-
ders of magnitude smaller than the physical energy lost dur-
ing a collision, and therefore should not interfere with the
longterm evolution of a system. We plan to study this issue in
more detail in the future.

4 EXAMPLES

We now highlight a number of possible simulations that can
be performed using HERMES.

4.1 Massive Outer Solar System

Both Duncan et al. (1998) and Chambers (1999) simulated
the outer Solar System, but increased the masses of all planets
by a factor of 50 to trigger close encounters between planets.
Analogous to Chambers (1999) and Duncan et al. (1998) we
use fH = 3, dt = 0.03 yrs, and integrate the system for 1000
years.

We perform a number of simulations of the massive outer
Solar System, and find that the relative energy error stays
bounded at ∼ 10−7 for all simulations, matching the results
of Chambers (1999) and Duncan et al. (1998).

4.2 Migration of a Planet in Planetesimal Disk (Kirsh
et al. 2009)

Here we reproduce the results of Kirsh et al. (2009) for the
migration of a single planet embedded in a planetesimal disk.
In this study a 2.3M⊕ planet orbits a Solar mass star at 25 AU,
embedded in a disk of ∼ 6 · 104 planetesimals. The planetes-
imal disk extends 10.5 AU on each side of the planet, each
planetesimal has a mass 1/600th of the planet, and an over-
all surface density profile proportional to a−1 is used. The
radii of all orbiting particles were determined assuming a
constant density of 2 g/cm3. The eccentricities and inclina-
tions were drawn from a Rayleigh distribution, which is pa-
rameterized by the scale parameter σ. For this experiment
we use σe = 0.01, and σi = 0.005, where inclination is in
radians. The argument of periapse, true anomaly, and longi-
tude of ascending node were all randomly drawn from uni-
form distributions over [0, 2π]. Adopting the default settings
of Kirsh et al. (2009), we set HERMES to merge particles in-
elastically, set dt = 2 years, fH = 5, f� = 15, and track
the energy lost due to collisions or ejections. We also set
r->ri hermes.adaptive hill switch factor = 1, activat-
ing the adaptive Hill switch routine (Section 2.5). An IPython
notebook containing the code to run this example can be
found at https://github.com/silburt/hermes_ipython.

We run 6 separate simulations, each for 70,000 years,
and plot the results in Fig. 8. The relevant comparison plot
in Kirsh et al. (2009) is the lower right panel in Figure 3. For
all runs in both Kirsh et al. (2009) and our work the final
position of the planet is between 18.5 < a < 20 AU, and
show similar evolution tracks throughout the simulation. The
relative energy error over the course of all our simulations
do not exceed 2 · 10−7 after accounting for the energy lost in
inelastic collisions.

4.3 Comparison to MERCURY and SyMBA– Long
Simulations

Here we perform a set of long simulations and compare our
results to MERCURY and SyMBA. These integrators are also ca-
pable of integrating complex N -body systems with close en-
counters, and also make use of semi-active particles. The sim-
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Figure 8. Planet’s semimajor axis vs. time, analogous to the numeri-
cal experiment in the lower right panel of Figure 3 from Kirsh et al.
(2009). Light green lines represent individual runs, while the dark
thicker green line represents the average of the individual runs.

ulations for these tests contain a Solar-mass star, a Neptune-
mass planet at a = 1 AU and a disk of 100 semi-active
planetesimals distributed according to a powerlaw between
0.8 − 1.2 AU. The mass of each planetesimal is a third of a
lunar mass, the eccentricities and inclinations are set to 0,
and the argument of periapse, true anomaly, and longitude
of ascending node were all randomly drawn from uniform
distributions over [0, 2π]. We set dt = 0.01, fH = 3, merge
particles inelastically, and use our adaptive fH routine (Sec-
tion 2.5). In addition, for all three integrators we track the
energy lost due to inelastic collisions and ejections so that we
can isolate the numerical energy error. We accomplish this by
using the eoffset variable in SyMBA and EN(3) variable in
MERCURY, and calculate the relative energy error according to
(Ei +Eoff −E0)/E0, where Ei is the total energy at iteration
i, E0 is the initial total energy and Eoff is the energy lost due
to collisions and ejections, i.e. eoffset in SyMBA and EN(3) in
MERCURY.

We feed identical initial conditions to SyMBA, MERCURY

and HERMES, and evolve all simulations for 50 Myr. We run
6 simulations per integrator that differ only by the seed of the
random number generator. We average the relative energy er-
ror for these simulations to smooth out variations between
individual runs. The results are presented in Figure 9. The
top panel displays the relative energy error with each integra-
tor, while the bottom panel shows the elapsed time for each
individual run.

Looking at the top panel, SyMBA incurs significant energy
jumps early in the simulation. We suspect these energy jumps
are due to inadequately resolved close encounters, since the
energy jumps are uncorrelated with particle collisions. We
simulated runs using different combinations of RHSCALE and
RSHELL, i.e. the parameters which define close encounter re-
gions, but were unable to resolve these energy jumps. By the
end of the simulation, SyMBA is orders of magnitude less ac-
curate than MERCURY and HERMES.

Figure 9. A test of HERMES, MERCURY and SyMBA for collections of
50Myr, 50 planetesimal runs. Top panel shows the relative energy
error over time, with individual runs in lighter shades and averaged
values in dark shades. Bottom panel shows the elapsed simulation
times of individual runs, using the same colour scheme as the top
panel.

We see that HERMES initially has the lowest energy er-
ror, but grows faster than MERCURY. The final energy error for
an integration therefore depends on the particular problem
(length of simulation, timestep, number and severity of close
encounters etc.). Furthermore, we find that some MERCURY

simulations undergo significant energy jumps, probably also
due to very close encounters that are not properly resolved.
Our adaptive fH algorithm (Section 2.5) protects against
these situations from occurring, and for a properly chosen fH

and dt combination we find the energy growth of HERMES to
be well behaved.

The bottom panel shows that for these simulations
HERMES is slower than SyMBA but faster than MERCURY. We
see that HERMES exhibits a larger variance in elapsed simula-
tion times than MERCURY and SyMBA. This is because when the
adaptive fH routine is engaged, fH can be enlarged consider-
ably during severe encounters, slowing down the integrator.
In summary, these simulations show that HERMES provides a
good balance between speed and accuracy.

5 CONCLUSION

In this paper we have presented HERMES, a hybrid integrator
capable of integrating close encounters and collisions. HERMES
integrator is composed of two parts, a global simulation which
contains all particles and a mini simulation which contains
all active particles (e.g. stars and planets) plus any semi-
active/test particles (e.g., planetesimals) involved in a close
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encounter. The global simulation is integrated with WHFast

while the mini simulation is integrated with IAS15. Compar-
ing HERMES to the openly available MERCURY and SyMBA we
find that HERMES provides a good balance between accuracy
and speed.

HERMES takes a more direct approach when integrating
close encounters over other methods. However this has en-
abled us to characterize the error of HERMES, and we find that
the switching error from a single close encounter is well de-
scribed by Eq. 8, which we calculate from first principles. The
total energy error of HERMES for an N -body simulation is well
described by a random walk, (see Eq. 9) with the step size
being the switching error.

We have also developed an adaptive algorithm that
chooses the optimal Hill switch factor, fH, which governs the
size of the close encounter region surrounding each particle.
This frees the user from optimizing integrator parameters for
typical cases. Finally, we have introduced a number of new
features in REBOUND, including a new heliocentric version of
WHFast, semi-active particles (see Fig. 1) and inelastic colli-
sions.

We have showcased a number of problems well-suited for
HERMES, and compared our integrator’s performance to simi-
lar integrators in the literature. In particular, we integrated
the outer Solar System with planetary masses increased by a
factor of 50, and we simulated a planet migrating through a
disk of planetesimals, both in the limit of many planetesimals
(∼ 105) and short times (∼ 103 orbits), and few planetesi-
mals (100) and long times (∼ 108 orbits). Many more types of
problems are possible with HERMES, and additional examples
can be found at https://github.com/hannorein/rebound.
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